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Space charge impedance. Smooth transitions.

Diffraction impedance.
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Lecture outline

Model wakes: resistive, inductive, and capacitive

Indirect space charge force

Longitudinal space charge

Yokoya’s formulas for a smooth collimator

Diffraction model for the impedance
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Resistive wake

There are several general models of the longitudinal wake. Sometimes it is
convenient to use model wakes that approximate some part of reality. These
wake functions are singular, and the Kramers-Kronig relations may not hold for
them. For each wake, we plot the bunch wake (4.2), W`(s), for a Gaussian
bunch distribution (shown by the dashed line).

1. The resistive wake, R is the
resistivity

w`(s) = Rcδ(s) (6.1)

Z` = R

W`(s) = Rcλ(s)

The resistive bunch wake has the same
shape as the bunch distribution.
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Do not confuse this wake with the resistive wall wake. Note20.
20

In order to not violate the causality, the delta function is assumed to be slightly shifted to positive s, i.e., δ(s − ε) with
ε → 0.
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Inductive wake

2. The inductive wake, L is the
inductance,

w`(s) = Lc2δ ′(s) (6.2)

Z` = −iωL

W`(s) = −Lc2λ ′(s)

Typically L > 0. The bunch head at
positive s. No average energy loss.
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This type of wake is often a good approximation for long bunches
propagating in a vacuum chamber with large conductivity, when the
beam energy losses can be neglected (see below). The inductive
impedance often approximates the limit of small frequencies ω.
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Capacitive wake

3. The capacitive wake: h(s) is the
step function, C is the capacitance,

w`(s) = Ch(s) (6.3)

Z` = −
C

iω

W (s) = C

∫∞
s

ds ′λ(s ′)

The bunch head is at positive s.
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Transverse space charge effects

We calculated the transverse fields and the transverse force inside a
relativistic beam with uniform charge in L2, Eq. (2.13). We assumed the
beam in free space, however, the same result is valid if the beam is inside
a round pipe (we only used the symmetry of the problem in the
derivation). This force is called the direct space charge force. It scales as
γ−2 and becomes small for relativistic beams.

The situation is different if the vacuum chamber is not round. It turns
out that the averaged over time beam current, 〈I 〉, has a contribution to
the transverse force that does not depend on γ. Typically 〈I 〉 � Ipeak,
but in the limit γ� this field can be important. It is often called the
indirect space charge.

We consider here an approximation of two parallel plates. We will also
assume that the beam current does not depend on time, and hence the
magnetic field penetrates through the wall.
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Transverse space charge effects
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Consider a beam of radius a with λ is the
number of particles per unit length (λ is
assumed constant). The beam is located at
the center line. Consider a particle that has
offset y . In addition to the electric
field (2.12) there is electric field from the
image charges acting on the particle, see
the figure.

Ey =
eλ

2πε0

∞∑
n=1

(−1)n
[

1

2nh + y
−

1

2nh − y

]

= −
eλ

πε0
y

∞∑
n=1

(−1)n
1

(2nh)2 − y2
(6.4)
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Effect of conducting and magnetic screens

We are interested in the limit y � h, and can neglect y2 under the sum.
The result is

(∑∞
n=1(−1)n 1

n2 = −π2/12
)

Ey =
π

48

eλ

ε0h2
y (6.5)

From the divergence equation ∂Ex/∂x + ∂Ey/∂y = 0 one can find
electric field Ex near the axis:

Ex = −
π

48

eλ

ε0h2
x (6.6)

Multiplied by the charge, these terms add to the self-force Eq. (2.13).
Note that in contranst to Eq. (2.13) there is no γ−2 suppression in the
indirect force.
There is no contribution from magnetic images, unless there are high µ
material outside of the pipe.
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Longitudinal space charge effects
We now calculate the longitudinal field Ez of a beam in a round, perfectly
conducting pipe (in L2 we estimated the longitudinal field in free space,
Eq. (2.15)). Consider a beam of charge Q that has the density distribution
n(r , z) in the form

n(r , z) = ν(r)λ(z)

We assume that ν(r) is normalized by 2π
∫b

0
r ν(r) dr = 1, where b is the pipe

radius; then λ is the number of particles per unit length.
We go into the beam frame. The beam density there is (r ′ = r)

n ′(r , z ′) = ν ′(r)λ ′(z ′) (6.7)

We then solve the equation for the potential φ ′(r , z ′) in the beam frame

∆φ ′ = −
Q

ε0
n ′

We assume a long wavelength perturbation, much longer than the pipe radius b,
and neglect the second derivative ∂2φ ′/∂z ′2 in the Laplacian,

1

r

∂

∂r
r
∂φ ′

∂r
=

Q

ε0
ν ′(r)λ ′(z ′) (6.8)

It is clear that φ ′ ∝ λ ′(z ′). We solve the radial part of the equation using the
method of Green functions.
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Longitudinal space charge effects

The Green function for the last equation is the solution of

1

r

∂

∂r
r
∂G (r , ξ)

∂r
= δ(r − ξ), (6.9)

with the boundary condition G (b, ξ) = 0 and G (0, ξ) finite. The solution
is

G (r , ξ) =

{
ξ ln ξ

b if r < ξ
ξ ln r

b if r > ξ
(6.10)

With this Green’s function we find the field

φ ′(r , z ′) = −
Q

ε0
λ ′(z ′)

(∫ r
0
ξ dξν ′(ξ) ln

r

b
+

∫b
r
ξ dξν ′(ξ) ln

ξ

b

)
(6.11)
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Space charge in a perfectly conducting round pipe

The electric field in the beam frame is

E ′z = −
∂φ ′

∂z ′
(6.12)

We now need to transform this into the lab frame. We have Ez = E ′z ,
ν(r) = ν ′(r) and z ′ = γz , so that λ ′(z ′) = λ(z ′/γ)/γ

∂λ ′

∂z ′
=

1

γ

∂λ

∂z ′
=

1

γ2

∂λ

∂z
(6.13)

so

Ez(r , z) =
Q

ε0γ2

dλ(z)

dz

(∫ r
0
ξ dξν(ξ) ln

r

b
+

∫b
r
ξ dξν(ξ) ln

ξ

b

)
(6.14)

For a beam of radius a with uniform radial distribution in the region
r < a, ν = 1/πa2, the expression in the bracket is

−
1

2π

(
ln

b

a
+

1

2
−

r2

2a2

)
≡ −

1

2π
Λ (6.15)
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Space charge in a perfectly conducting round pipe

We have

Ez(r , z) = −
Q

2πε0γ2
Λ
dλ(z)

dz
(6.16)

Strictly speaking, Ez depends on r , but this dependence is weak, and often is
neglected setting r = 0, then

Λ = ln(b/a) + 1/2

Comparing with Eqs. (6.2) we see21 that the wake function (per unit length) is
the derivative of the delta function

w`(s) = −
1

2πε0γ2
Λ
dδ(s)

ds

This is not our standard wake—it depends on the transverse beam size and its
energy.
Instead of setting r = 0, it makes more sense though to integrate over the cross
section of the beam.

21
We use the relation W` = −Ez/Q with W` the bunch wake per unit length.
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Space charge in a perfectly conducting round pipe

The space charge impedance (per unit length) is

Z` = iω
1

2πε0γ2c2
Λ = iZ0Λ

ω

2πcγ2

which is the inductive impedance with negative inductance.
Recall that we assumed long bunch length in the beam frame. This
means

σz �
b

γ

For the impedance, this condition translates into the requirement

ω

c
� γ

b
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Yokoya’s formulas for wake of a smooth transition

To remove halo particles from the beam one often uses collimators. To
lower the collimator impedance one can try to taper the collimator jaws
to get a gradual transition from a large to a small aperture and back.

a)

b)

h

z

z

Another example is transitions to and from undulators (that have small
gaps) in light sources.
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Practical examples of tapers and collimators

Taper to an undulator (from
NSLS-II CDR).

An LHC collimator.
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Yokoya’s formulas for wake of a smooth transition

The impedance of a smooth round tapered transition was calculated by
K. Yokoya22 in the limit of low frequencies.

Z`(ω) = −
iωZ0

4πc

∞∫
−∞

dz(a ′)2 (6.17)

and the transverse impedance

Zt(ω) = −
iZ0

2π

∞∫
−∞

dz

(
a ′

a

)2

(6.18)

where a(z) is the pipe radius as a function of z , and the prime denotes
the derivative with respect to z , a ′ = da/dz . These formulas assume
that the taper angle is small, α ≡ |a ′(z)|� 1.

22
K. Yokoya, “Impedance of Slowly Tapered Structures,” Preprint CERN SL/90-88 (AP) (1990)
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Yokoya’s formulas for wake of a smooth transition

Another condition of applicability of Yokoya’s formula is

αka� A,

k = ω/c , and A is a numerical factor of order of unity. For a bunch of length
σz , the characteristic value of k in the beam spectrum is equal to σ−1

z .
Applying Eq. (6.17) to a conical transition with the conical angle α that
connects two pipes of radii a1 and a2 (a2 > a1) gives the following result:

Zt = −
iZ0

πaav

ε tanα

1 − ε2
= −

iZ0

2π

(a2 − a1)
2

a1a2
L

where aav = (a1 + a2)/2 and ε = (a2 − a1)/(a2 + a1) and L is the length of the
transition. More results on this subject can be found in the review paper23.

Small-angle collimators are not easy to simulate in computer programs, because
some codes represent a smooth pipe wall by a sequence of small steps in r .

23
G. Stupakov, PAC09, page 4270, Vancouver, Canada, 2009.
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Fresnel diffraction (from A. Chao’s book)

Using the connection between the energy loss and impedance we can
estimate impedance of a so called pillbox cavity at high frequencies.

We want to apply the idea of diffraction to the field of an ultrarelativistic
beam — thediffraction model. It works in the limit of high frequencies
or, equivalently, short bunches.
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Diffraction impedance of a round pill-box cavity

Assume axisymmetric geometry, perfectly conducting walls.

�

λ�

�

Consider a Gaussian beam that is
modulated with the wavenumber
k = ω0/c ,

λ̃(z) =
1√

2πσz
e−z2/2σ2

z cos
(ω0

c
z
)

Here λ̃ is the modulated fraction of the
beam, with σz � c/ω0.

The field on the wall before the cavity is given by Eq. (2.10)

Eρ = cBθ =
1

4πε0

2Qλ̃(z)

a

The width of the diffraction area is ∼
√
gλ =

√
gc/ω (we use

λ = λ/2π = 1/k). Let us estimate the energy loss of the beam (λ̃ ∼ 1/σz):

∆E ∼
ε0E

2 + µ0H
2

2
× 2πa×

√
g

c

ω0
× σz ∼ ε0

(
Q

ε0(2π)3/2aσz

)2

2πa

√
g

c

ω0
σz
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Diffraction impedance of pill-box cavity

This energy loss is related to the real part of impedance through
Eq. (4.14)

∆E = −
Q2

π

∫∞
0

dωReZ`(ω)|̂̃λ(ω)|2

We need to calculate ^̃λ(ω)

^̃λ(ω) =
1

2

(
e(ω−ω0)

2σ2
z/2c

2
+ e(ω+ω0)

2σ2
z/2c

2
)

Only a narrow peak around ω = ω0 contributes to the integral

∆E ≈ −
cQ2

√
2πσz

ReZ`(ω0)

Equating this to the previous expression for ∆E we can find the real part
of the impedance,

ReZ`(ω) ∼
Z0

(2π)3/2

1

a

√
gc

ω
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Diffraction impedance of pill-box cavity

More accurate calculations give a numerical factor
√

2 and

Z` =
Z0

4π

2(1 + i)

π1/2a

√
gc

ω
(6.19)

See movies of field lines in the wake fields.
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